An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins
نویسندگان
چکیده
Determining the composition of messenger ribonucleoprotein (mRNP) particles is essential for a comprehensive understanding of the complex mechanisms underlying mRNA regulation, but is technically challenging. Here we present an RNA-based method to identify RNP components using a modified streptavidin (SA)-binding RNA aptamer termed S1m. By optimizing the RNA aptamer S1 in structure and repeat conformation, we improved its affinity for SA and found a 4-fold repeat of S1m (4×S1m) to be more efficient than the established MS2 and PP7 systems from bacteriophages. We then attached the AU-rich element (ARE) of tumor necrosis factor alpha (TNFα), a well-known RNA motif that induces mRNA degradation, via 4×S1m to a SA matrix, and used the resulting RNA affinity column to purify ARE-binding proteins (BPs) from cellular extracts. By quantitative mass spectrometry using differential dimethyl labeling, we identified the majority of established ARE-BPs and detected several RNA-BPs that had previously not been associated with AREs. For two of these proteins, Rbms1 and Roxan, we confirmed specific binding to the TNFα ARE. The optimized 4×S1m aptamer, therefore, provides a powerful tool for the discovery of mRNP components in a single affinity purification step.
منابع مشابه
Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1
Efficient isolation of endogenously assembled viral RNA-protein complexes is essential for understanding virus replication mechanisms. We have developed an affinity purification strategy based on an RNA affinity tag that allows large-scale preparation of native viral RNA-binding proteins (RBPs). The streptavidin-binding aptamer S1 sequence was inserted into the 3' end of dengue virus (DENV) 5'-...
متن کاملStreptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins.
RNA affinity tags would be very useful for the study of RNAs and ribonucleoproteins (RNPs) as a means for rapid detection, immobilization, and purification. To develop a new affinity tag, streptavidin-binding RNA ligands, termed "aptamers," were identified from a random RNA library using in vitro selection. Individual aptamers were classified into two groups based on common sequences, and repre...
متن کاملA novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes.
Intracellular mRNA targeting and localized translation are potential determinants for protein localization. To facilitate targeting, mRNAs possess specific cis-acting sequence motifs that are recognized by trans-acting RNA-binding proteins (RBPs). While many mRNAs are trafficked, our knowledge of the RBPs involved and presence of additional transcripts within these ribonucleoprotein (RNP) compl...
متن کاملRNA affinity tags for purification of RNAs and ribonucleoprotein complexes.
Intrinsic affinity tags are useful tools for the study of macromolecular targets. Although polypeptide affinity tags are routinely used in purification and detection of protein complexes, there has been a relative lack of powerful RNA affinity tags that can be embedded within RNA sequences. Here, the preparation and use of two RNA affinity tags against Sephadex or streptavidin are described. Th...
متن کاملEfficient detection of RNA–protein interactions using tethered RNAs
The diverse localization of transcripts in cells suggests that there are many specific RNA-protein interactions that have yet to be identified. Progress has been limited, however, by the lack of a robust method to detect and isolate the RNA-binding proteins. Here we describe the use of an RNA aptamer, scaffolded to a tRNA, to create an affinity matrix that efficiently pulls down transcript-spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014